

PB-003-001608

Seat No. _____

B. Sc. (Sem. VI) (CBCS) Examination

March / April - 2020

Chemistry : C-603

*(Physical Chemistry & Analytical Chemistry)
(Old Course)*

Faculty Code : 003

Subject Code : 001608

Time : $2\frac{1}{2}$ Hours]

[Total Marks : **70**

1 Answer following questions : 20

- (1) What is mathematical form of Debye Huckel limiting law ?
- (2) What is mathematical form of Nernst heat theorem ?
- (3) Give Gibbs Helmholtz equation.
- (4) Define open system.
- (5) Write mathematical form of “Nernst’s Distribution” law.
- (6) Define partial molar entropy.
- (7) Give reduction half cell reaction on chlorine gas electrode.
- (8) Give an example of electrode concentration cell.
- (9) What is ionic product of water at 25°C ?
- (10) Define pH.
- (11) Define “equivalent conductance.”
- (12) Draw the nature of the conductometry titration of “weak acid versus strong base”.
- (13) In thin layer chromatography stationary phase usually made up of (i) _____ and (ii) _____.
- (14) Best TLC plate can be prepared by _____ method.
- (15) Which type of chromatography is useful for the purpose of “water softening” ?

- (16) EDTA is which type of legend ?
- (17) What is role of masking agent ?
- (18) Which colour gives phenolphthalein in 0.5 M HCl solution ?
- (19) Define argentometry titration.
- (20) Draw the schematic graph of pH metry titration of “strong acid versus strong base.”

2 (a) Answer any **3** questions. **6**

- (1) Calculate valence factor of Na_2SO_4 .
- (2) List any four applications of emf measurements.
- (3) Give any one test of 3rd law of thermodynamics.
- (4) Why does $\Delta E_{\text{cell}}^{\circ}$ for concentration cells is zero ?
- (5) What is importance of “partial molar property” concept ?
- (6) What is relationship between activity and activity coefficient for uni-univalent electrolyte ?

(b) Answer any **3** questions : **9**

- (1) Derive the equation to calculate ΔE_{cell} , of concentration cell without LJP and with transference.
- (2) Discuss the effect of temperature on chemical potential.
- (3) How ‘Nernst Heat Theorem’ leads to the 3rd law of thermodynamics ?
- (4) Give characteristics of chemical potential.
- (5) If 4 gram of NaOH in 1 litre of its solution, calculate ionic strength of solution.
- (6) Derive equation of pH by calomel electrode.

(c) Answer any **2** questions : 10

- (1) Discuss the determination of absolute entropies of solid, liquid and gas with related equations.
- (2) Write a short note on LJP. Explain "how can reduce or eliminate LJP" ?
- (3) Discuss the method of intercept to determine partial molar property.
- (4) Discuss any one "emf method" to determine activity coefficient.
- (5) Discuss the emf method to determine dissociation constant of weak acid.

3 (a) Answer any **three** questions : 6

- (1) Give schematic classification of chromatography.
- (2) Define : Rf-value and Rx-value.
- (3) Give Kohlrauch law.
- (4) Which factors affecting conductance ?
- (5) Give Welcher's rule for EDTA titration.
- (6) Define :
 - (a) Ohm's law
 - (b) Ligand

(b) Answer any **three** questions : 9

- (1) Give uses of ion exchange chromatography.
- (2) Compare advantages of TLC with other chromatographic techniques.
- (3) Explain the principle of metal ion indicator.
- (4) Define : conductivity water. How it can prepare ?
- (5) Explain potentiometry titration of "mixture of Cl^- , Br^- , I^- versus AgNO_3 ".
- (6) Derive Henderson equation to determine dissociation constant of weak acid by pH-metry.

(c) Answer any **two** questions : **10**

- (1) Define all types of EDTA titrations.
- (2) Explain following conductometry titrations.
 - (a) Strong acid v/s weak base
 - (b) Weak acid v/s strong base
- (3) Explain “Fe versus $\text{Ce}(\text{SO}_4)_2$ ” redox titration by potentiometry.
- (4) Discuss paper chromatography in detail.
- (5) Explain cation and anion exchange resin.
